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Abstract

An increasing amount of observations from different applications such as

long-term environmental monitoring or disaster management is published

in the Web using Sensor Web technologies. The standardization of these

technologies eases the integration of heterogeneous observations into several

applications. However, as observations differ in spatio-temporal coverage

and resolution, aggregation of observations in space and time is needed. We

present an approach for spatio-temporal aggregation in the Sensor Web us-

ing the Geoprocessing Web. In particular, we define a tailored observation

model for different aggregation levels, a process model for aggregation pro-

cesses and a Spatio-Temporal Aggregation Service. The presented approach
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is demonstrated by a case study of delivering aggregated air quality observa-

tions on-demand in the Sensor Web.

Keywords: Geoprocessing Web, Sensor Web, Spatiotemporal Aggregation,

Air Quality Monitoring

1. Introduction1

An increasing amount of observations gathered by geosensor networks2

is published via standardized Sensor Web technologies to enable an ad-hoc3

integration of heterogeneous observations in different applications (Broering4

et al., 2011). As observations usually differ in their spatio-temporal cover-5

age and resolution, aggregation of observations in space and time is needed.6

Moreover, due to the heterogeneity of these observations, aggregating them7

is also not trivial. The aggregations need to be performed by dedicated8

geoprocessing facilities. The Geoprocessing Web with its aim to provide9

common analysis and transformation of geospatial data into geospatial in-10

formation is promising to realize spatio-temporal aggregation in the Sensor11

Web. Currently, data coming from the Sensor Web and Geoprocessing fa-12

cilities are tightly coupled and only realized for specific scenarios. Though13

aggregated observations are already available on the Web through for in-14

stance weather portals (WetterOnline, 2011) or public observation portals15

(EEA, 2011), these observations are only aggregated in space or in time. An16

integrative approach for spatio-temporal aggregation is missing. Moreover,17

these aggregates cannot be calculated on-demand nor are they accessible on18

the web in standardized formats. In addition, metadata about provenance19

or aggregation methods is currently not available.20
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A comprehensive approach for spatio-temporal aggregation in the Sensor21

Web allowing a flexible integration of observations at a required aggregation22

level needs to be investigated. The approach has to be flexible to enable easy23

reuse, integration, and composition of existing aggregation methods. Also, it24

needs to allow for an on-demand aggregation. To allow retracing aggregated25

observations to original observations, the approach needs to provide machine26

readable metadata about the original observations and the aggregation pro-27

cesses. The main contributions of the paper regarding these requirements28

are:29

1. A data model for observations that can be used across different aggre-30

gation levels. This model also incorporates metadata about provenance31

and aggregation method (Section 3).32

2. A process model for spatio-temporal aggregation (Section 4).33

3. A web service architecture for aggregation of observations including the34

definition of the Spatio-Temporal Aggregation Service (STAS) (Section35

5).36

In our approach, we propose a Service-Oriented Architecture (SOA) for37

spatio-temporal aggregation of observations. As the Open Geospatial Con-38

sortium (OGC) provides well-defined encodings and service interfaces for39

both, the Sensor Web and the Geoprocessing Web, we are utilizing these40

standards in our approach. As a basis for our SOA, we define a tailored41

observation model and process model for spatio-temporal aggregation. The42

proposed SOA consists of Sensor Observation Services (SOS), the standard43

service for providing observations in the Sensor Web (Na and Priest, 2007),44

and the Spatio-Temporal Aggregation Service (STAS), which is defined as a45
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profile of the Web Processing Service (WPS). The WPS provides the basic46

service interface for the Geoprocessing Web (Schut, 2007). In a case study,47

we demonstrate how our approach meets the requirements identified above48

by temporally aggregating hourly measurements of Ozone to daily maxima49

and by spatially averaging these maxima for each federal state in Germany.50

The remainder of the paper is structured as follows: At first, we provide a51

brief overview on related work and background information (Section 2). We52

then describe the tailored observation model that can be used across differ-53

ent aggregation levels (Section 3). Afterwards, we present the process model54

for spatio-temporal aggregation (Section 4). In the next section, we describe55

how we provide these processes in the Sensor Web (Section 5). The imple-56

mentation of the approach for an aggregation of air quality observations is57

presented afterwards (Section 6). Finally, we discuss our results and identify58

further research (Section 7).59

2. Background60

This section provides the related work. At first, we give an overview about61

spatio-temporal aggregation, which forms the framework for this work. Af-62

terwards we provide background information about Geospatial Web Services63

including Sensor Web technology, the Geoprocessing Web and the Model64

Web. Geospatial Web Services have been identified as a foundation of this65

work to enable interoperability of spatio-temporal aggregation on the Web.66

They provide common means to build interoperable geospatial applications67

in the Web (Zhao and Di, 2010).68

An aggregation process computes a single value, an aggregate, for a group69
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of attribute values by means of an aggregation function (Jeong et al., 2004).70

The attribute values are grouped by a partitioning predicate. In our work,71

spatio-temporal aggregation combines objects in space and time and provides72

means to compute aggregates for certain attribute values attached to these73

objects. Most of the research on spatio-temporal aggregation during the last74

years has focused on improving aggregation operations in spatio-temporal75

databases. For example, Vega Lopez et al. (2005) give a comprehensive sur-76

vey on spatio-temporal aggregation methods in databases. Others develop77

general models for space and time that can be used as a basis for spatio-78

temporal aggregation: Worboys (1994) defines a unified model for space and79

time and Camossi et al. (2003) introduce a multi-granular spatio-temporal80

data model. Jeong et al. (2004) define a generic algorithmic framework for81

spatio-temporal aggregation processes in databases. Related research regard-82

ing sensor observations deals with the aggregation of low-level sensor data83

to reduce the communication load from sensors to databases and clients.84

For example, Madden et al. (2002) introduce a tiny aggregation service for85

in-network aggregation of observations. However, in the case of low-level sen-86

sor data aggregation, observations with a higher resolution are usually lost.87

This is in contrast to our approach which provides flexible spatio-temporal88

aggregation of sensor observations to different aggregation levels in the Web.89

Geosensor networks are interconnected sensors for monitoring environ-90

mental phenomena or geographic processes (Nittel and Stefanidis, 2005).91

The Sensor Web thereby abstracts from low-level interfaces and protocols92

in geosensor networks by adding an additional application layer in the Web93

(Broering et al., 2011). The Sensor Web Enablement (SWE) initiative of the94
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Open Geospatial Consortium (OGC) aims to standardize the Sensor Web95

with a suite of standardized interfaces (Botts et al., 2007). The goal of the96

SWE initiative is to improve the interoperability of discovery, access and97

tasking of sensors in the Web. The Sensor Observation Service (SOS) forms98

the web-based interface for accessing observations and sensor metadata in99

the Sensor Web (Na and Priest, 2007). It allows client applications to query100

different kinds of observations through standardized operations and filters101

and retrieve the observations in a common format. The available obser-102

vation data in the SOS can be retrieved in the Observations&Measurements103

(O&M) format, which is a model and encoding for observations (Cox, 2007a).104

Metadata about sensors that are registered at a SOS interface is provided105

in the Sensor Model Language (SensorML) (Botts and Robin, 2007). The106

observations can be queried in a flexible way from a SOS interface regarding107

space, time or thematic attributes. Though Havlik et al. (2009) introduce a108

system of cascading SOS instances, which is able to aggregate observations109

in time, an (spatio-temporal) aggregation functionality is currently not sup-110

ported by the SOS interface. Following seperation of concerns, aggregation111

functionality should be rather provided by other processing services and the112

aggregated observations should be accessible via the SOS interface.113

In the past, most Geoprocessing functionality has been provided by mono-114

lithic Geographic Information Systems (GIS). By standardizing the interface115

for geoprocessing on the Web such as the Web Processing Service (WPS)116

(Schut, 2007), geoprocessing functionality has been integrated into various117

applications (Brauner et al., 2009) and the Geoprocessing Web evolved. The118

Geoprocessing Web makes geoprocessing functionality available on the web,119
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which can be used interchangeably. To ensure interoperability of this func-120

tionality, profiles have been proposed to be used in the Geoprocessing Web. A121

profile consists of unique identifiers for its processes implemented as Unified122

Resource Names (URN), and of process descriptions including the definition123

of input and output parameters. An example of a profile related to aggrega-124

tion is described by Foerster (2010) in the context of generalization. Related125

to processing of observations, Chen et al. (2010) describe a standards based126

processing system for wildfire detection in an Sensor Web environment. The127

use of standardized geoprocessing in wildfire analysis, smoke data analysis,128

and forecast has also been described and evaluated by Falke et al. (2008). As129

a possibility for a web-based aggregation, Pebesma et al. (2011) introduce a130

web service for the automated spatial interpolation of observations. However,131

the service does not provide spatio-temporal interpolation methods.132

When processing sensor data in the Web, provenance information is cru-133

cial to determine the quality of the information derived. Recently, several134

initiatives have developed models for providing provenance information in the135

Web. The Open Provenance Model (OPM)1 defines a model for provenance136

graphs enabling to retrace an information item in the Web back to its origin.137

Similarly, a Provenance Vocabulary has been defined that can be used, for138

example, in Linked Open Data (Hartig and Zhao, 2010). Related to sensors,139

Liu et al. (2010) propose a provenance-aware virtual sensor using the OPM.140

The virtual sensor provides continuous observations estimated from values141

gathered by surrounding physical sensors. We are also conceptualizing the142

1http://openprovenance.org/
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aggregation process as a virtual sensor, but rather in the sense of a software143

sensor like described by Kabadayi et al. (2006) to integrate the aggregation144

process in our observation data. Instead of adding additional provenance145

metadata like described by Park and Heidemann (2008), the provenance in-146

formation is directly provided in our model. Thus, following the final report147

of the W3C Provenance Incubator Group2, our approach is providing prove-148

nance information passed by value and embedded in the representations. It149

allows to retrieve relevant provenance information similar as described by150

Patni et al. (2010) for Linked Open Data.151

3. A Data Model for Observations across Different Aggregation152

Levels153

This section describes the tailored observation model that can be used154

for observations at different aggregation levels. The model is based on the155

O&M model (Section 2) and is shown in Figure 1. The result of an obser-156

vation can either be a numerical value with information about the unit of157

measurement (uom) or a value coverage. While the single value can be used158

to represent non-aggregated as well as aggregated observations, the value159

coverage can be used for interpolation results. The procedure has created160

an observation. In order to represent aggregation processes, we have added161

an AggregationProcess as a procedure (see also Section 4). In case of non-162

aggregated observations, we are using a SensorSystem that can represent163

single sensors as well as sensor systems like air quality monitoring stations.164

2http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
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The spatial geometry of an observation is part of the featureOfInterest.165

Environmental phenomena are usually fields in geographic space. Thus, an166

in-situ measurement is a sampling at a certain location of the field-based167

phenomenon. We have restricted the featureOfInterest either to be a168

SF SamplingPoint for a point as geometry or to be a SF SamplingSurface169

for a polygon. Both features are defined in the sampling feature specifica-170

tion (Cox, 2007b) and thus provide a reference to a superior feature, the171

sampledFeature. In case of an aggregation, the featureOfInterest usually172

changes from SF SamplingPoint to SF SamplingPolygon. An aggregation173

from smaller to larger polygons is also possible. The observedProperty rep-174

resents the phenomenon that is observed (e.g. ozone concentration). Usually,175

it is a property of the sampled feature (e.g. atmosphere). No specific ad-176

justments of the observedProperty are necessary in our model. The time177

when an observation applies is kept in the samplingTime. In our model, this178

can either be an instant in time or a time period. While the time instant179

can only be used for non-aggregated observations, the time period is usually180

used for aggregated observations.181

When aggregating observations, information about the quality of the ag-182

gregation result is crucial. Therefore, the resultQuality can contain statis-183

tical information like standard deviation (e.g. in addition to averaged values).184

In addition, provenance information is needed. The AggregationProcess185

Figure 1: UML diagram of the observation model that can be used at different aggregation

levels. The blue-colored classes stem from the O&M model while the yellow-colored classes

have been added to represent different aggregation levels.
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contains associations to the SensorSystems which have gathered the original186

observations. This is not applicable for providing sufficient provenance infor-187

mation, as not all observations produced by a sensor are aggregated. Thus,188

we have introduced the isAggregateOf association between observations for189

referencing the original observations through identifiers. Each observation190

which has been aggregated can be retraced by following the isAggregateOf191

association. The original observations again provide information about the192

time when they have been produced, the spatial location and the initial mea-193

surement process as described above. Thus, our model contains provenance194

information about the original observations as well as the aggregation pro-195

cess.196

4. A Process Model for Spatio-temporal Aggregation Processes197

Based on the tailored observation model for different aggregation levels198

described in the previous section, this section defines the aggregation process199

model. In an aggregation process, observations are grouped by a partitioning200

predicate before applying a certain aggregation function to its values (Section201

2). We currently consider the partitioning predicates to be spatial and/or202

temporal. Thus, observations are grouped spatially and/or temporally and203

aggregation functions are then applied to the result values of the observations204

in one group to calculate a new aggregated observation. Figure 2 shows the205

UML diagram of our basic aggregation process model.206

The main class is the AbstractAggregationProcess. All aggregation207

processes are ProcessModels as defined in SensorML and thus are having an208

Input, an Output, and Parameters. Additionally, they have a name, a de-209
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Figure 2: UML diagram of the model for aggregation processes. An aggregation process

has a set of observations as inputs and outputs. It is defined by the parameters containing

the grouping predicates and the aggregation functions.

scription and metadata properties including a global identifier. For simplicity,210

we only show the identifier of the aggregation process in our diagram. The211

Input of an AbstractAggregationProcess acts as a container for several212

input observations. In the same way, the Output of an AggregationProcess213

is a container for several aggregated observations. Both, Input and Output,214

can either directly contain the observations or reference SOS instances. The215

Parameters class contains the spatial and temporal predicates as well as the216

aggregation functions that are used to aggregate the result values of the ob-217

servations. The subtypes of the AbstractAggregationProcess are defined218

by the subtypes of the predicates and aggregation functions.219

Several subtypes of the predicates can be defined. Two examples are220
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shown in Figure 3. For example, the spatial predicate PolygonContainment221

is defined to aggregate point measurements to polygons that are retrieved222

from a Web Feature Service (WFS), the main web service for retrieving spa-223

tial vector data. Thus, the type has two additional parameters, namely an224

URL pointing to a WFS and a request which selects certain polygon features.225

The temporal predicate TemporalGridding groups the temporal extent of all226

observations into time intervals of equal duration. In the same manner, ag-227

gregation functions can be defined, that are applied to the result values after228

spatial or temporal grouping. Depending on the chosen aggregation func-229

tion, the order of grouping and the order of applying an aggregation function230

(spatial first or temporal first) can be of importance. For example, com-231

puting the daily maxima first and then averaging them spatially is different232

than calculating spatial averages first and then applying the max function to233

the spatial averages. Thus, an additional parameter indicating the order is234

introduced (spatialFirst). Together with our tailored observation model,235

we now have the two models that allow us to define the aggregation processes236

that shall be provided by our spatio-temporal aggregation service.237

Figure 3: UML diagram showing two subtypes of spatial and temporal partitioning predi-

cates. The PolygonContainment predicate is defined to group points to polygons that are

provided by a WFS. The TemporalGridding predicate is used for paritioning a temporal

extent in time intervals of equal duration.
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5. Spatio-Temporal Aggregation Service238

To provide aggregation functionality in the Sensor Web in an interoper-239

able way, we define the Spatio-Temporal Aggregation Service (STAS) as a240

profile of the OGC WPS. Figure 4 illustrates the basic service architecture for241

spatio-temporal aggregation in the Sensor Web consisting of SOS instances242

and the STAS. The STAS can be linked dynamically with SOS instances to243

retrieve input observations and publish the aggregated observations.244

Figure 4: Basic service architecture for spatio-temporal aggregation in the Sensor Web.

The STAS queries non-aggregated observations from a SOS instance and inserts the ag-

gregated observations in another transactional SOS instance.

According to the definition of WPS profiles (Section 2), we now describe245

the two parts of our STAS profile: An URN scheme for defining the iden-246

tifiers of the processes, and the implementation of process descriptions ac-247

cording to our aggregation process model (Section 4). Following the com-248

mon URN scheme of the OGC as defined in Whiteside (2009), a basic URN249

has the form urn:ogc:def:objectType. Thus, the basic URN for aggrega-250

tion processes is defined as urn:ogc:def:aggregationProcess. The spa-251

tial grouping predicate (sgp) and spatial aggregation function (saf) is ap-252

pended to the basic URN followed by the temporal grouping predicate (tgp)253

and temporal aggregation function (taf). Thus, the resulting generic URN254
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is urn:ogc:def:aggregationProcess:sgp:saf:tgp:taf. For example, the255

URN urn:ogc:def:aggregationProcess:polygonContainment:spatial-256

Mean:temporalGridding:temporalMax identifies the process which averages257

observations that are contained in polygons and calculates the maximum258

value of these aggregates for temporal intervals. Depending on the value of259

the spatialFirst parameter (see Section 4), the temporal aggregation can260

also be applied first. The additional parameters needed for the predicates261

and aggregation functions are defined in the process descriptions as defined262

in the next paragraph.263

To perform a spatio-temporal aggregation, the Execute operation of the264

STAS has to be invoked. The parameters of the Execute request for a spe-265

cific aggregation process are described in its process description, which can266

be retrieved through the DescribeProcess operation. We now describe the267

parameters of the aggregation processes. The URN of the process has to be268

passed in every Execute request to identify the aggregation process. Addi-269

tionally, each Execute request contains an URL of the SOS instance providing270

the input observations and a SOS request to identify the observations which271

should be aggregated. As the output observations are also published via272

the SOS interface, another input parameter is the URL of the SOS instance273

where the aggregated observations should be published. Following the ag-274

gregation process model (Section 4), each aggregation process is defined by275

the subtypes of the spatial and temporal grouping predicates and aggrega-276

tion functions. Depending on these subtypes, each aggregation process has277

additional parameters. In case of the examples shown in Figure 3, the addi-278

tional parameters are an URL pointing to a WFS and a request identifying279
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polygonal features in WFS. For the temporal gridding, a duration has to be280

defined and passed to the STAS. Finally, the aggregation functions can define281

additional parameters. For example, if the spatial aggregation method is a282

Kriging interpolation method, there will be additional Kriging parameters283

like a variogram. After aggregating the observations, every aggregation pro-284

cess returns a reference to the SOS instance offering the set of aggregated285

observations. If requested by the client, the aggregated observations can also286

be included in the Execute response.287

6. Case Study - Spatio-Temporal Aggregation of European Air288

Quality Observations289

This section presents the spatio-temporal aggregation of European air290

quality observations, as provided by the EEA, to demonstrate the developed291

approach (Section 3-5). In particular, the approach is implemented to ag-292

gregate Ozone observations collected in Germany to mean and maximum293

values in temporal intervals and to averages of these temporal aggregates294

in space. Figure 5 shows the OpenLayers client visualizing observations be-295

fore the aggregation (left side) and after the aggregation (right side). The296

red bar behind the aggregated value is showing the confidence interval calcu-297

lated from the standard deviation of the values. The statistics are encoded in298

O&M using the Uncertainty Markup Language (UncertML) (Williams et al.,299

2009).300

The service deployment for the case study is shown in Figure 6. One SOS301

instance serves approximately 30 million observations extracted from the302

AirBase database files of the European Environmental Agency (EEA, 2011).303
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Figure 5: Screenshots of the OpenLayers client visualizing air quality observations before

(left) and after (right) the aggregation.

Administrative areas of Germany are provided as vector-based features by304

a WFS. The spatio-temporal aggregation is implemented in a prototype of305

the STAS. Currently, it provides means to aggregate points to polygons in306

space and to partition temporal extents of observations into time intervals.307

Supported aggregation functions for space and time are MIN, MAX, SUM308

and MEAN. Another SOS instance provides the aggregated observations. As309

a client, the OpenLayers SOS client (Eijnden, 2010) has been extended and310

a simple user interface has been developed for sending requests to SOS and311

WPS.312

Figure 7 shows the workflow of an exemplary spatio-temporal aggregation313

of ozone observations. As an aggregation process is executed on-demand, a314

client sends an Execute request to the STAS. Then, the STAS retrieves the315

observations from a SOS instance and, in parallel, the administrative areas316

from a WFS instance. Now, the observations are grouped temporally, then317

aggregated, and afterwards these temporal aggregates are grouped and aggre-318

gated spatially. The aggregated observations are then inserted into another319
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Figure 6: Service deployment for spatio-temporal aggregation of European air quality

observations. The architecture consists of one SOS instance offering the basic air quality

observations, a WPS instance implementing the STAS, a SOS instance that provides the

aggregated observations, and a WFS providing administrative areas of Germany. The

OpenLayers client has been customized to interact with WPS and SOS and to visualize

observations.

SOS instance and the reference to the aggregated observations is returned320

by the STAS to the client. The client can now retrieve the aggregated ob-321

servations from a SOS. As an option, the aggregated observations can also322

be directly contained in the aggregation service response. The aggregation323

functions applied can be easily exchanged by invoking another aggregation324

process.325

Provenance information is provided directly in the aggregated observa-326

tions. The isAggregateOf element points to the original ozone observations327

provided by SOSs. Retrieving this observations allows to retrieve similar328

provenance information like described by Patni et al. (2010) for Linked Data:329
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Figure 7: Workflow of spatio-temporal aggregation of European air quality observations.

the location and time of the observation as well as the description of the330

measurement procedure that has produced the observation result provided331

as SensorML description. The procedure element of the aggregated observa-332

tions points to the SensorML description of the aggregation process. Thus,333

information about the applied aggregation function and predicates can be334

retrieved. We do net yet include information about the users of the aggre-335

gated or source observations like described in Park and Heidemann (2008)336

and consider this to be future work.337
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7. Discussion & Conclusions338

In this paper, we describe an approach for spatio-temporal aggregation of339

observations in the Sensor Web. As a foundation for our approach, we define340

a tailored observation model (Section 3) that can be used at different aggre-341

gation levels. Additionally, a process model for spatio-temporal aggregation342

processes is developed (Section 4). To realize the spatio-temporal aggregation343

in the Sensor Web, a service-oriented architecture using Geospatial Web Ser-344

vices is proposed. The central component of this architecture is the Spatio-345

Temporal Aggregation Service (STAS) that is defined as a profile of the OGC346

Web Processing Service (Section 5). The STAS can be dynamically linked347

with Sensor Observation Service (SOS) instances that offer non-aggregated348

observations and with SOS instances that allow to insert the aggregated ob-349

servations. Hence, by relying on these standardized service interfaces the350

aggregation methods can be easily re-used in the Web and the observations351

are always provided in the same format at different aggregation levels. Ad-352

ditionally, the tailored observation model allows to retrace non-aggregated353

observations from aggregated observations. Furthermore, the reference from354

observations to the aggregation process allows to retrieve information about355

the aggregation process in a standardized format. The presented approach356

is applied to a case study of aggregating air quality data (Section 6).357

Our case study shows that the STAS allows for a flexible integration of358

aggregation processes within SOSs and, thus, in the Sensor Web and Geo-359

processing Web. Aggregation methods can be exchanged in a flexible way,360

while the common service operations remain the same for both, the execution361

of the aggregation as well the access to the aggregated observations. This362
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eases the integration in clients and other applications. Other approaches363

(Liu et al., 2008; Kabadayi et al., 2006; Patni et al., 2010) usually focus on364

aggregating raw measurements provided in a proprietary format and then365

providing the aggregates in standardized formats. Furthermore, the STAS366

aggregates a set of source observations to a set of aggregated observations367

whereas the other approaches usually focus on producing a single aggregate368

out of several observations.369

The process model is general enough for the definition of different ag-370

gregation processes, as the spatial and temporal grouping predicates and371

the aggregation functions allow for additional parameters depending on the372

method chosen. However, we do not yet consider a thematic aggregation373

as described by Patni et al. (2010) where the grouping predicate might be374

thematic (e.g. high windspeed, low temperature, heavy snowfall) in order to375

aggregate the observations to a higher level event (e.g. Blizzard). It has to be376

explored, whether the STAS can also be used for such a thematic aggregation377

of observations.378

As the STAS is implemented as a WPS profile, it allows for an on-demand379

aggregation. Most approaches for aggregating observations through virtual380

sensors use predefined aggregation processes and the execution time of the381

aggregation is predefined as well, see for example Liu et al. (2008). However,382

the STAS might be used in these approaches to provide the aggregation pro-383

cessing, for example the estimation of values for a new virtual sensor where384

no physical sensors are available. Encapsulating the aggregation processes385

through an WPS interface allows to integrate aggregation in Geoprocessing386

workflows. The STAS is able to mediate between different observation and387
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model services providing or requiring the data in different resolutions. In or-388

der to realize complex aggregation workflows that require several aggregation389

steps, a WPS-T interface as proposed by Schaeffer (2008) might be used. It390

allows to create complex workflows out of the basic aggregation processes391

which then can be published as complex WPS processes again. This enables392

the STAS to provide complex aggregation chains in the same manner as the393

simple aggregation processes. While we propose a model for aggregation of394

observation, we did not yet provide disaggregation methods like e.g. dis-395

aggregating grid cells to point observations. Their integration needs to be396

explored in future work.397

While the STAS allows for a flexible and seamless integration of aggre-398

gation processes in the Sensor Web, the communication overhead for trans-399

ferring large datasets between the services has been identified as a possible400

drawback of the approach. In that case, one approach might be to tightly401

couple the STAS with a SOS instance and thus reduce the communication402

overhead: Instead of passing the URLs of the SOS instances, the observa-403

tions can automatically be fetched from a SOS running on the same ma-404

chine. Also, the aggregated observations can directly be inserted in this SOS405

instance again. Another approach to cope with large datasets might be effi-406

cient caching and indexing strategies as described by Sivasubramanian et al.407

(2007).408

To enable the discovery of already deployed aggregation processes in the409

Web and to automate observation aggregation workflows, semantic descrip-410

tions of observations and aggregation processes are needed. In a next step, we411

plan to semantically enable the STAS by using already existing approaches412
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for integrating semantics in web-based spatial data infrastructures (Janow-413

icz et al., 2010) and by utilizing observation ontologies like defined by the414

W3C (Janowicz and Compton, 2010). Finally, we consider to extend the con-415

cept of the STAS from aggregation processes for observations to aggregation416

processes for general spatio-temporal data in SDIs.417
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