
A Client for Distributed Geo-Processing on the

Web

Theodor Foerster1 and Bastian Schäffer2

1 International Institute for Geo-Information Science and Earth Observation
P.O. Box 6, 7500AA Enschede, the Netherlands

foerster@itc.nl
2 Institute for Geoinformatics

Robert-Koch-Str. 26-28, D-48149 Münster, Germany
schaeffer@uni-muenster.de

Abstract. The OGC Web Processing Service specification provides a
means to perform web-based processes on distributed geodata and to
produce thereby web-based geoinformation. However a client which in-
tegrates different data and geo-processing services is missing but would
enable fully web-based information integration. This was the starting
point for this study to build a client, which is able to integrate multiple
web-based data and processing services. The applicability of the client
for web-based information integration will be demonstrated for a real-
time risk management scenario. The client is realized on top of uDig
and available under Open Source license (GPL) at the 52◦ North Open
Source initiative.

Key words: Web Processing Service, Web Processing Service Client,
web-based processing

1 Introduction

As computational power and network capabilities mature, processing of dis-
tributed data towards information becomes one of the main interests in the
IT world. This aspect is addressed by the evolving concept of Web Services
and Service-oriented Architecture (SOA, [1]). Distributed processing using Web
Service technology is also a main interest in the geoinformation (GI) domain,
as most of the GI applications involve large amounts of globally distributed
data and as the demand for distributed available geo-information increases. The
web-based geodata access was addressed by the concept of Spatial Data Infras-
tructures (SDI, [2]) and the invention of Web Service and geodata standards as
for instance developed by the Open Geospatial Consortium (OGC3). Web-based
geoinformation has been identified as a key factor for SDIs in the future, there-
fore sufficient concepts for web-based processing are required. Such processes
have to be able to access globally distributed data and to provide the informa-
tion in line with the already available standards. Regarding such a standardized
3 OGC website: www.opengeospatial.org



2 Theodor Foerster and Bastian Schäffer

service for web-based processing the OGC proposed the Web Processing Service
(WPS) specification as a discussion paper4 [3].

In the last two years several communities started to implement this spec-
ification [4, 5] and demonstrated its applicability by several use cases, such as
generalization processing [6] or groundwater vulnerability measurement [7]. We
developed a processing client based on the Java Uniform Mapping Platform
(JUMP5) [6]. Additionally [8] built a small demo application, but his demo did
not provide flexible access to WPS nor integration with other services. So a flex-
ible client application, which utilizes the capabilities to process distributed data
services over the web and present the result in a pleasing way to the user has
been missing. This was the starting point for this study to investigate the bene-
fits of such a client and to implement a ready-to-use client solution. We decided
to implement it as a desktop application as such a breed of application provides
more flexibility to the user such as advanced data querying and visualization ca-
pabilities. We chose the User-friendly Desktop Internet GIS (uDig6, [9]) like [8]
already did for a small demo application on WPS as the appropriate implemen-
tation platform, because it already allows connecting to distributed data services
such as Web Map Service (WMS) and Web Feature Service (WFS). Thereby it
provides many advantages against JUMP, which does not allow to connect to
any OGC Web Service and which only provides limited styling capabilities to
the user. The client is realized as a plug-in for uDig and is available under Open
Source license (GPL) at the 52◦ North Open Source initiative7. It is important
to note, that the presented work is unique in the evolving field of web-based geo-
processing, as it focuses on a flexible processing client, which allows integrating
data and geo-processing services.

In Section 2, the paper describes the technical background of WPS and the
idea of processing distributed services as utilized in the proposed client. Then
we provide in Section 3 some insights into the client architecture. Section 4
demonstrates a real-time risk management scenario incorporating generalization
functionality and buffer analysis. Both processes demonstrate the applicability
of the client and the benefit of distributed data processing. Finally we discuss
some problems we encountered during this study and give an outlook about
possible extensions of the client. We also draw a conclusion about the practical
experience with the uDig client in comparison to JUMP. The paper ends with a
conclusion.

2 Technical Background

The Web Processing Service specification describes a way how to publish and
perform processes on the web. Such a process can range from a simple buffer
calculation to a complex process of vector analysis for generalization purposes.
4 The discussion paper is known as WPS version 0.4.0.
5 JUMP website: www.jump-project.org
6 uDig website: udig.refractions.net
7 52◦ North website: www.52north.org



A Client for Distributed Geo-Processing on the Web 3

The communication is based on three operations (Figure 1), which can be called
via HTTP-GET and key-value pair (KVP) encoding or HTTP-POST and a
XML-encoding. The GetCapabilities operation (step I. in Figure 1) provides
service metadata and some brief description of the process. The process metadata
including the parameter descriptions is accessible through the DescribeProcess
operation (step II.). Via the Execute operation it is possible to call the desired
process (step III.).

Fig. 1. Basic client-service communication pattern to perform a desired process on
WPS.

Besides capabilities to perform long-term processes and to store process re-
sults on service side, WPS provides the capability to link distributed resources
into the process via an Uniform Resource Locator (URL). This URL might iden-
tify a location at which a GML file is stored or even be a WFS call for a specific
feature type. This reference will be incorporated in the Execute request to the
WPS as a ComplexValueReference8 element (Example 1).

Example 1 (Sample ComplexValueReference element linking WFS road data).
<wps:ComplexValueReference ows:reference=”http://geoserver:8080/
geoserver/wfs?SERVICE=WFS&VERSION=1.0.0&REQUEST=
GetFeature&typename=roads” schema=”http://schemas.opengis.net/
gml/2.1.2/feature.xsd”/>

8 This paper is based on the version 0.4.0 of the WPS specification, so the name of
the ComplexValueReference element might differ in the coming versions.



4 Theodor Foerster and Bastian Schäffer

By using this ComplexValueReference element, the client does not have to
take care about sending the plain data to the WPS, but only the reference.
Additionally such references provide a certain degree of freedom to the WPS
implementation about how to retrieve the data or enable even to apply some
caching mechanism based on comparing the references over multiple requests.
Overall this feature improves the performance of web-based processes on client
and service side drastically, as it decreases the workload to prepare the data
for sending at the client side and as it enables service-side caching as already
mentioned. Additionally looking at the topology of the network, most services
are able to retrieve data faster than clients can send them, because services are
mostly located in faster network environments.

Besides improved performance linking resources via ComplexValueReference
incorporates the notion of distributed data access, as the WPS is able to incor-
porate multiple data from different locations. This distributed notion guarantees
real-time data access. However from the perspective of caching, this might cause
some trouble, as some data will be cached but has been updated at the origi-
nal source in the meanwhile. So a trade-off will always remain between caching
(i.e. for preformance purpose) and real-time data processing. Section 4 including
Figure 7 demonstrates the application of processing referenced data services in
WPS.

3 Client Architecture

The client is realized as a plug-in in uDig, which is organized as a set of plug-ins
on top of the eclipse rich client platform (RCP9). The eclipse RCP implements
the concept of inversion of control and allows thereby only specific parts of the
workflow to be customized. The customization within the eclipse RCP is achieved
via so called extension points, at which the intended functionality can be inserted
into the RCP framework. The concept of extension points is inherited by uDig
to insert intended functionality at designated points of the uDig workflow.

So in order to register a new service type, like the WPS, in uDig, the net.-
refractions.udig.catalog.ServiceExtension extension point and the net.-
refractions.udig.catalog.ui.ConnectionFactory extension point have to
be implemented. The ServiceExtension allows the introduction of new service
types to uDig. The ConnectionFactoy requires a custom wizard and a class
extending net.refractions.udig.catalog.ui.UDIGConnectionFactory as a
binding between the user interface and the internal model of uDig. The simplified
architecture is presented in Figure 2.

The WPSServiceExtension is a net.refractions.udig.catalog.Service-
Extension, which is the major hook to make a WPS available as a new data-
source within uDig. The class acts mainly as a factory to create new WPSService-
Impl instances, which inherit from net.refractions.udig.catalog.IService.
Such an instance will only be created, if the entry URL of the WPS instance is

9 eclipse RCP website: www.eclipse.org/rcp/



A Client for Distributed Geo-Processing on the Web 5

Fig. 2. Simplified class diagram of the developed uDig plug-in.



6 Theodor Foerster and Bastian Schäffer

not yet available in uDig. Meta information about the represented WPS such as
the URL, the description and the name are stored in WPSServiceInfo, which
inherits from net.refractions.udig.catalog.IServiceInfo. The WPS does
not provide layers like most of the common OGC Web Services. Since uDig ap-
plies this common OGC Web Services layer concept, the plug-in has to provide
the process results as layers. Therefore, the process results are available to the
layer view of uDig through WPSGeoResourceImpl.

The integrated execution of a WPS process and the rendering of the process
results as layers in uDig involves several steps. This procedure goes beyond
the current wizard concept of uDig, because it is mainly designed for a simple
datasource import, which is handled by a single wizard page. Therefore the
concept of wizards in uDig was extended by enabling the wizard to consist of
more than one custom page. This allows separating the complex WPS execution
procedure into smaller steps.

Overall, the basic interaction between the user and uDig is realized as follows
(Figure 3): First the designated type of service has to be chosen - in this case
WPS (step I.). This kicks-off the previously mentioned WPSConnectionFactory,
since it was registered with the WPS service. The WPSConnectionFactory.-
createConnectionpage() method creates and returns the first custom wizard
page to the enclosing wizard (step II). The page requests the user to enter the
entry URL to the WPS. After the user has pressed the wizard’s next button, the
client requests automatically the capabilities for the entered URL and for each
of the processes the process description. Thereupon, the second wizard page is
displayed and now the user can select the process (step III.), he/she wants to
use. The selected process is internally stored and after pressing the next button,
the third custom wizard page is shown. This page allows the user to configure
the selected process with the necessary parameters (step IV.). The form for
the parameters is generated on-the-fly, based on the process description. For
every required literal input, the user is presented with a corresponding text box.
Additionally, for every complex input, the user can choose from a drop down
list containing currently available layers inside of uDig. If the user chooses a
WFS layer, the layer can be send by reference according to the general wizard
configuration. This allows the WPS to fetch the data and saves up time, since
not the whole data has to be prepared on the client-side and transferred to the
service (Section 2). In the last step (step V.), the wizard shows a final layer
selection wizard page, which allows the user to select the layer(s) he/she wants
to add to uDig.

To get more insight into the internal workflow of the client and how the classes
cooperate to perform according to the user’s action in the wizard, the remainder
of this section will summarize the course of action in more detail. So after the
user has pressed the next button in step IV., uDig recognizes that there are no
more custom wizard pages provided and tries to fetch all layers that can poten-
tially be added. Therefore, a WPSServiceImpl instance is created through the
WPSServiceExtension.createService() method. Figure 4 presents the course
of action taken to get all potential layers.



A Client for Distributed Geo-Processing on the Web 7

I. II.

III.

IV. V.

Fig. 3. The sequence of wizard pages to add a WPS process in uDig. I.) Select service
type, II.) Enter WPS entry URL, III.) Select process, IV.) Configure process parame-
ters, V.) Select process output.



8 Theodor Foerster and Bastian Schäffer

Fig. 4. Sequence diagram describing the creation of uDig layers representing WPS
results.

First, the wizard, represented by the ConnectionState, calls the members()
method on the WPSServiceImpl instance. This method obtains a WPSDataStore
instance through the WPSDataStoreFactory class. The WPSDataStore receives
all parameters collected during the previous wizard pages and fetches all process
descriptions from the 52◦ North WPS Client API, represented by the WPSClient
class in Figure 4. Next, the WPSServiceImpl instance calls the getTypeNames()
method on the previously created WPSDataStore instance. This method analyzes
each stored process description and returns the name for each complex output
from the requested process. Now, the WPSServiceImpl instance is able to create
a WPSGeoResourceImpl object for each returned process output, which is finally
returned back to the calling ConnectionState object.

Fig. 5. Sequence diagram describing the execution of a WPS process inside of uDig.



A Client for Distributed Geo-Processing on the Web 9

The wizard page in step V. is based on the results returned from the WPS-
ServiceImpl.members()method. Finally, the user has to press the finish button
to start the actual WPS process execution, which is illustrated in Figure 5. For
each selected layer, the corresponding WPSGeoResourceImpl object is requested
to return the associated features. Therefore, the resolve() method is called,
which obtains the WPSDataStore from the corresponding WPSServiceImpl ob-
ject and fetches the features from the WPSDataStore instance by calling the
getFeatureSource() method. This method constructs the actual WPS execute
request based on the stored parameters collected during the wizard page process
and sends the request to the WPSClient, which finally forwards it to the WPS
over the wire.

The process results are cached and passed into a newly created WPSFeature-
Reader object, which parses the data and makes it available. The WPSFeature-
Reader object is returned back to the WPSGeoResource and finally forwarded to
the calling ConnectionState object to be displayed in uDig. As a result, a new
layer is added to the layer list and the associated features are displayed. From
now on, this layer can be treated as any other uDig resource and especially serve
as input for another WPS process.

4 A Distributed Processing Scenario

The scenario aims at producing a readable map to indicate recent fire threats
to transport infrastructure. Thus this scenario involves data about fire threat
areas (i.e. areas where fire has been reported) and road data. It inherits aspects
of a real-time risk-management application, as different data source have to
be integrated and processed in order to improve decision making. The chosen
location for this scenario is the North-West of Spain. The data for the burnt areas
are provided by the courtesy of the Joint Research Center in Italy and served
through a WFS. The roads of Spain are taken from CORINE data, provided and
served by ITC’s WFS. In order to produce a satisfying map we also incorporated
some CORINE landcover data, served through a WMS.

However these data sources do not contain the required information per se.
In order to analyze, which roads are at stake by such a fire threat, buffers are
created around the burnt areas. Additionally, as the roads are too detailed to
be displayed on a general overview map, simplification has been applied to the
roads. Overall, this involves two processes: Buffering the burnt area data and
simplifying the road geometries. Both processes are available through the stan-
dardized WPS interface. An overview of the involved services, their data and
processes is depicted in Figure 6. The WFS instances are geoserver10 imple-
mentations and the WPS instance is based on the 52◦ North implementation
of the WPS. The result of the described scenario with some CORINE data as
background information (served through a WMS) is presented in Figure 7.

It is important to note, that this scenario is completely based upon dis-
tributed services. Especially incorporating the burnt areas data demonstrate the
10 geoserver website: www.geoserver.org



10 Theodor Foerster and Bastian Schäffer

ITC’s WFS

JRC’s WFS

WMS

Simplify
Buffer

Roads of Spain
The WebCorine landcover... ...

...

Burnt areas

ITC’s WPS
<gml>

<gml>

Udig client

...

Fig. 6. Overview of the involved services in the described scenario.

Fig. 7. Screenshot of the final result as described in the scenario.



A Client for Distributed Geo-Processing on the Web 11

applicability of this client for real-time data processing and visualization in a
risk management scenario. Such burnt areas could be collected from sensors and
published on-the-fly to a WFS, as it is described in [10] for a fire alert information
system in South Africa. Thus, using ComplexValueReferences allows us to dy-
namically process real-time data (from WFS) and extract real-time information
(by WPS).

The client resolves the references of the data to be processed automatically
and incorporates them into the Execute request just as depicted in Example
1 of Section 2 (and Figure 8). Therefore the user has to register the different
services into the client by indicating the endpoints of the suggested services.
Based on this manual registration the client is able to retrieve the metadata of
these services (via GetCapabilties & DescribeProcess) automatically. Afterwards
the client is able (based on additional parameters for the processes) to perform
a sequence of processes as proposed in this scenario and depicted in Figure 8.

Fig. 8. Sequence diagram of the applied web-based processes (simplifying & buffer-
ing) incorporating the effect of automatically referencing the distributed data sources
(spanish roads & burnt areas).



12 Theodor Foerster and Bastian Schäffer

5 Outlook & Conclusion

During the implementation and the testing we got a lot of insights into the
WPS specification and the architecture of uDig. While uDig is in principal a
real powerful tool, the concept of inversion of control can sometimes limit its
capabilities. Comparing finally our experiences with JUMP [6] with our recent
experiences gained from uDig, it becomes clear that uDig’s capabilities to access
data services eased the development significantly. In the case of JUMP we would
have had to implement the connection to the data services from scratch. So this
was a big advantage of uDig. Also the visualization part is more pleasing than in
JUMP. However the developing effort of the wizard pages in uDig to configure
the connection to the WPS in a user-friendly and flexible way was significantly
higher, than it would be in JUMP, due to the limitations caused by the concept
of inversion of control (details see in Section 3).

The WPS has also demonstrated the powerful feature of referencing dis-
tributed services. However some aspects of the specification are still not really
sufficient. For instance, it is not possible to handle typed references. Such refer-
ences would indicate the type of service is referenced in the ComplexValueRefer-
ence and would thereby enable the WPS to apply different strategies of retrieving
and caching the data.

In a further stage of the research we want to incorporate more service chain-
ing capabilities in the client to model, deploy and trigger complex chains of
processing and data services based upon WPS and BPEL.

Overall this study presents a client which can be applied for information
integration in a real-time risk management scenario based upon a distributed
service architecture as proposed in the Orchestra Project [11] or in the AFIS
project [10]. The scenario demonstrates that processing is required to extract
the required information (e.g. buffered area, simplified road geometries). Udig
has proven to be a suitable platform to integrate data and processing services
automatically in a user-friendly way.

The presented scenario in this paper is described in a hands-on tutorial and
demonstrated in a screencast. Both plus the ready-to-use uDig plug-in are avail-
able through the 52◦ North website.

Acknowledgements

We highly appreciate the contribution of Dr. Rob Lemmens and Barend Köbben
(both colleagues at ITC), who supported us presenting our work at the AGILE
workshop 2007 about a Test-bed for geospatial web service interoperability. We
also want to thank the Joint Research Center (JRC) for providing the data for
the scenario. The work of Theodor Foerster is covered by the RGI 002 project11.

Finally we want to thank the anonymous W2GIS reviewers for their con-
structive remarks.

11 RGI 002 project website: www.durpondergronden.nl



A Client for Distributed Geo-Processing on the Web 13

References

1. Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to web service
architecture. IBM Journal 41(2) (2002) 170–177

2. McLaughlin, J., Groot, R.: Geospatial data infrastructure : concepts, cases and
good practice. Spatial Information Systems and Geostatistics Series. Oxford Uni-
versity Press (2000)

3. OGC: OpenGIS Web Processing Service. OGC discussion paper OGC 05-007r4,
Open Geospatial Consortium (2005)

4. Foerster, T.: An open software framework for web service-based geo-processes. In:
Free and Open Source Software for Geoinformatics, Lausanne, Switzerland (11-15
September 2006)

5. Cepicky, J.: Grass goes web: PyWPS. In: Free and Open Source Software for
Geoinformatics, Lausanne, Switzerland (11-15 September 2006)

6. Foerster, T., Stoter, J.: Establishing an OGC web processing service for generaliza-
tion processes. In: ICA workshop on Generalization and Multiple Representation.
(2006)

7. Kiehle, C.: Business logic for geoprocessing of distributed data. Computers &
Geosciences (2006)

8. Johansson, J.: Standardized access to geospatial information and services. Master
thesis, Department of Computing Science, Umea University, Sweden (Spring 2006
2006)

9. Ramsey, P.: udig desktop application framework. In: Free and Open Source Soft-
ware for Geoinformatics, Lausanne, Switzerland (11-15 September 2006)

10. McFerren, G., Roos, S., Terhorst, A.: Fire Alerts for the Geospatial Web. In: The
Geospatial Web. Springer (2006)

11. Annoni, A., Bernard, L., Douglas, J., Greenwood, J., Laiz, I., Lloyd, M., Sabeur, Z.,
Sassen, A.M., Serrano, J.J., Uslaender, T.: Orchestra: Developing a unified open
architecture for risk management applications. In van Oosterom, P., Zlatanova, S.,
Fendel, E.M., eds.: Geo-information for Disaster Management. (2005)


