Challenges for Automated Generalisation at European Mapping Agencies
- A Qualitative and Quantitative Analysis

Theodor Foerster, Jantien Stoter & Menno-Jan Kraak
International Institute for Geoinformation Science and Earth Observation, Enschede, the Netherlands
{foerster,stoter,kraak}@itc.nl

Abstract
The automation of generalisation is an important issue at National Mapping Agencies (NMAs) to reduce data production costs and to improve data maintenance. This paper presents the challenges for automated generalisation at European NMAs integrating a qualitative and quantitative analysis. The qualitative analysis focuses on the current strategies for automated generalisation at NMAs. The quantitative analysis extends these findings and measures the status of automated generalisation functionality at NMAs using the required and missing generalisation operators as indicators. The results are interesting for the research community, the software vendors and NMAs to streamline their efforts to accomplish full automation of generalisation processes.

Keywords: Automated generalisation, National Mapping Agencies, requirements of NMAs, generalisation functionality, generalisation operators.

1 Introduction
Producing and maintaining topographic data is one of the main responsibilities of National Mapping Agencies (NMAs). Within this context automated generalisation is an important goal for NMAs to increase efficiency of data production at multiple scales and to enable customised data products. Ideally automated generalisation is the way to implement the single scale database and to improve thereby the maintenance of all data products. However, automated generalisation is still mostly subject to research and only specific research results have found their way into practice as for instance shown by Lecordix et al. (2007) and Regnauld & Revell (2007). This is due to the data complexity of complete datasets (in contrast to selecting specific layers from datasets as usually studied in research), incompatibility of data models, even within the same NMA, lack of generic view on NMA requirements and limited processing facilities.

The objective of the research presented in this paper is to get an insight into the limitations that NMAs encounter with respect to automated generalisation. This will identify areas for future research and for software developments regarding automated generalisation. To meet this objective, an integrated qualitative and quantitative analysis has been carried out, which identifies the urgent and fundamental problems of NMAs’ daily work related to automated generalisation. The analysis updates and integrates the work of Stoter (2005a, 2005b) and Foerster & Stoter (2008). Stoter (2005a, 2005b) reports on the results of a workshop that took place in 2005 and was attended by twelve European NMAs. The workshop focused on two questions: what are the trends and policies for automated generalisation within NMAs, and which topics need further study to improve generalisation processes within NMAs?
Although the workshop took place a few years ago, the participants of the workshop updated the findings at the end of 2008.

The second research source for this paper is Foerster & Stoter (2008). This study presents preliminary results of a survey that was conducted at the end of 2007 and completed by eleven NMAs from eight European countries. The survey aimed at capturing a common view of NMAs on missing generalisation functionality. While the workshop provided initial findings about the NMA perspective on automated generalisation, the survey tested and quantified these findings.

The NMAs that participated in both the workshop and the survey are considered to be representative of NMAs that have good quality data available and that already have seriously considered the automation of generalisation within their processes. Some of them have made major steps towards full automation as will be demonstrated in this paper. Consequently by concentrating on this focus group, the research aimed at exposing outstanding generalisation problems. The result is an integrated analysis on the challenges of automated generalisation at European NMAs.

The paper will first provide an overview of previous research on challenges of automated generalisation for NMAs (Section 2). Section 3 presents the challenges for automated generalisation within NMAs through a qualitative analysis based on the workshop findings. An important outcome is the need for generic applicable generalisation functionality. This requires a common view on what this generalisation functionality should encompass. The quantitative analysis of the survey presented in Section 4 provides such a common view by concentrating on generalisation operators. It studies how specific operators are implemented in current map production with respect to importance and problematic (i.e. lacking) characteristics. In a second step operators are analysed with respect to the importance of feature types on which they are applied. The paper ends with a conclusion that discusses the findings in relation to challenges for automated generalisation as recently identified by Mackaness, Ruas & Sarjakoski (2007).

It should be noted that this paper specifically focuses on datasets that are maintained by NMAs in order to represent topography. Consequently datasets such as cadastral data (in some countries also maintained by NMAs), orthophotos and digital terrain models are not considered.

2 Literature Review

Research in the area of automated generalisation has yielded a lot of concepts and applications in the last 20 years. A good overview can be found in McMaster & Shea (1992), in Weibel & Dutton (1999) or in the most recently published book of Mackaness, Ruas & Sarjakoski (2007). Different views on generalisation have been developed, such as the generalisation model by Gruenreich (1992), which separates generalisation into model generalisation and cartographic generalisation (Figure 1). Model generalisation is concerned with the transformation of data according to a target model and cartographic generalisation aims at producing usable maps out of data while avoiding cartographic conflicts.
Besides the concepts for automated generalisation, different initiatives studied the challenges of automated generalisation for NMAs empirically. For instance Muller & Mouwes (1990) studied existing map series to get an insight into challenges for automated generalisation. They identified two types of generalisation knowledge to be automated: *superficial knowledge* and *deep knowledge*. Superficial knowledge is written down in map specifications meant for interactive generalisation. Deep knowledge is more important and much more complex to automate and is used by cartographers when superficial knowledge does not suffice. Rieger & Coulson (1993) carried out a survey among a group of cartographers performing interactive generalisation and found out that the classification of generalisation operators differs depending on the specific cartographer. Additionally they discovered that a consensus on such a classification does not exist. Besides those studies several interviews were carried out with experts to learn more about requirements for automated generalisation. Examples are McGraw & Harbison-Briggs (1989), Nickerson (1991), Kilpeläinen (2000). Also examples of reverse engineering are available aiming to collect generalisation knowledge from comparing map objects across scales (Buttenfield, 1991; Leitner & Buttenfield, 1995; Weibel, 1995). Other studies generated rules from interactive generalisation carried out by a cartographic expert (Weibel, 1991; Weibel et al., 1995; McMaster, 1995; Reichenbacher, 1995). Several studies applied machine learning techniques to convert expert knowledge into specifications. Examples are Weibel et al. (1995), Plazanet et al. (1998), Mustiere (2001; 2005) and Hubert & Ruas (2003). Ruas (2001) investigated within the OEEPE project the state-of-the-art of generalisation by evaluating different interactive generalisation software packages. The tests performed within this project were specific to cartographic conflicts, generalisation operations and algorithms and some test datasets. Brewer & Buttenfield (2007) ran map exercises with students on different datasets at various scales. The results of the exercises were compiled to the so called ScaleMaster, which provides guidelines for generalisation processes. Within the currently ongoing EuroSDR research project on the *state-of-the-art of generalisation*, the capabilities of several generalisation systems are being tested on a selection of test cases (Stoter et al., 2009).
3 Qualitative Analysis of Challenges for Automated Generalisation

The challenges of NMAs towards automated generalisation were analysed in a two-day generalisation workshop organised in April 2005 at the International Institute for Geoinformation Science and Earth Observation (ITC), Enschede, the Netherlands. The workshop studied the following two questions:

1. What are the trends and policies on automated generalisation within NMAs?
2. Which topics require further research?

This section describes the most important results of the workshop. Section 3.1 addresses the first question and summarises the generalisation process within the participating NMAs. A more extensive description of the workshop findings can be found in Stoter (2005a, 2005b). Section 3.2 answers the second workshop question and identifies topics that need further research to better serve practice. As mentioned before, the results of the workshop were updated by the participants end of 2008.

3.1 Trends and policies on automated generalisation

All participating NMAs maintain vector datasets at different scales to support their production processes. Either one, seamless database is maintained per scale or several databases are maintained for one scale based on (old) map sheets (one database per map sheet). All participating NMAs recognise the importance to introduce automated generalisation (or at least as automated as possible). Some NMAs have made more fundamental steps towards automated generalisation than others. This section describes the status of automated generalisation within NMAs by addressing the four main steps introducing automated generalisation:

1. Renewing data models
2. Designing the conceptual architecture
3. Implementing generalisation processes
4. Managing relationships between different scales.

The status of every step for the individual NMAs are summarised in Table 1 and will be further explained in this section using representative examples.

Renewing data models

As mentioned in the introduction, incompatible data models cause difficulties with respect to automated generalisation. Therefore, the first step towards automated generalisation is restructuring existing datasets into datasets compliant to data models that meet today’s requirements of base datasets. Example requirements are data delivery within a Spatial Data Infrastructure (SDI), history management, unique IDs and object-oriented datasets. This step has been taken by all participating NMAs. For the base datasets new data models have been designed. For the smaller scales data models are being restructured to make them compatible with the base dataset. Examples are the Dutch multi-scale Information Model TOPography (IMTOP) covering scales from 1:10k to 1:1,000k (Stoter et al., 2008) and the Danish multi-scale GeoDB data model that contains renewed data models for scales 1:50k and 1:100k.
Another example is Ireland who developed new conceptual model covering all scales. A prototype dataset was reengineered to evaluate this model. The next step is to reengineer all data to the new model, and to create a new production flow line for all large and small scale products (paper and digital, vector and raster). This will result in a single object-oriented database, which will be the source for all map products, irrespective of scale.

Some NMAs maintain a base dataset with varying scale. An example of Great Britain is the OS MasterMap product, a seamless topographic database for which the data have been collected at 1:1.25k in urban areas, 1:2.5k in rural areas, and 1:10k in mountain and moorland areas.

<table>
<thead>
<tr>
<th>NMA</th>
<th>Data models</th>
<th>Conceptual architecture</th>
<th>Implementation</th>
<th>Relationships between different scales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Renewed data model base dataset</td>
<td>Renewed data model smaller scales</td>
<td>Varying scale for base dataset</td>
<td>Star (S) or ladder (L) approach</td>
</tr>
<tr>
<td>Belgium</td>
<td>Yes</td>
<td>Yes</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Catalonia</td>
<td>Yes</td>
<td>Yes</td>
<td>Mix</td>
<td>Mix**</td>
</tr>
<tr>
<td>Denmark</td>
<td>Yes</td>
<td>Yes</td>
<td>Mix</td>
<td>No</td>
</tr>
<tr>
<td>France</td>
<td>Yes</td>
<td>Yes</td>
<td>Mix</td>
<td>No</td>
</tr>
<tr>
<td>Germany-North Rhine Westphalia and Baden-Württemberg</td>
<td>Yes</td>
<td>Yes</td>
<td>L</td>
<td>Yes</td>
</tr>
<tr>
<td>Germany-Lower Saxony</td>
<td>Yes</td>
<td>Yes</td>
<td>L</td>
<td>No</td>
</tr>
<tr>
<td>Great Britain</td>
<td>Yes</td>
<td>No</td>
<td>Yes*</td>
<td>*</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Yes</td>
<td>No</td>
<td>S</td>
<td>No</td>
</tr>
<tr>
<td>Ireland</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes*</td>
<td>No</td>
</tr>
<tr>
<td>Sweden</td>
<td>Yes</td>
<td>No</td>
<td>Yes*</td>
<td>Mix</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Yes</td>
<td>No</td>
<td>Yes*</td>
<td>Mix</td>
</tr>
</tbody>
</table>

* Not yet decided
** Not for 1:5k, 1:10k, 1:25k. Yes for 1:50k, 1:250k
+ Base dataset is 3D with target precision of 1m (but not for all layers of information)

Table 1: Analysis of the four main steps to introduce automated generalisation (for the definition of the star and ladder approach please refer to the following paragraph).
Designing the conceptual architecture

The second step to enable automated generalisation is to design the conceptual architecture of the (automated) generalisation process. The main questions for the conceptual architecture are: what are the intended source and target datasets of the generalisation processes?

The approach that is followed by all NMAs is to convert available datasets into datasets compliant with the new data models. After this step, the smaller scales are updated by generalising the updates from the base dataset. Consequently generalisation within NMAs focuses on generalisation of updates and data matching to make updating more efficient.

In some NMAs the smaller scale datasets are newer than the base dataset due to different update cycles. In such cases the smaller scales are updated independently of the base dataset until the update cycles are harmonised. Examples are 1:100k dataset in Denmark, 1:50k dataset in Belgium until 2005 (Fechir & Waele, 2005) and 1:100k dataset in the Netherlands.

An important decision concerning the conceptual architecture is whether to follow the *ladder approach* or *star approach* (EuroGeographics 2005). In the ladder approach (followed by Denmark, Belgium, Germany, Sweden and the Netherlands) the (updates of) smaller scales are derived from (the updates from) a large scale dataset in steps (scale by scale). For example Denmark applies the ladder approach for generalising 1:50k dataset and 1:100k dataset. The 1:200k and 1:250k datasets of Denmark are still independently processed. The alternative is the star approach in which every small scale dataset is generalised from the same base dataset. France, Switzerland and Catalonia have chosen for a mixture of both. In the mixed approach the large to mid-scale datasets are derived from the base dataset while smaller scales are derived from one mid-scale dataset. Ireland considers the ladder model for defined products (both large and small-scale) and the star model for a Web Service-oriented dissemination approach. Great Britain has still to decide on which approach to follow.

An important observation is that the scales that are produced and the scale transitions, at which generalisation is applied, differ among all NMAs (see also Section 4.1).

Another important decision for the conceptual architecture is whether to distinguish between model generalisation and cartographic generalisation. NMAs such as Denmark, Lower Saxony in Germany, Catalonia, Sweden and the Netherlands argue that if users are interested in geometries close to reality they should use a large scale dataset with topographical precision instead of geometries that have been modified (e.g. displaced) based on their symbolisation in the map. Therefore they do not distinguish between model and cartographic generalisation but apply both types of generalisation in one process. The other NMAs consider some operators such as displacing of objects only appropriate when producing a readable map and therefore they do distinguish between model and cartographic generalisation. However within this last group there is no consensus on which operator belongs to which process.

Implementing generalisation processes

The third step for introducing automated generalisation in production lines is the implementation. In all participating NMAs specific generalisation operations have been automated. However full automated generalisation processes do not exist. The NMAs of Catalonia, Denmark, Germany, France and Great Britain have made major
steps towards automated generalisation by adjusting available software or developing their own algorithms. In Great Britain the results have only been implemented prototypically in a research environment.

An important conclusion of all NMAs is that human interaction will always be required to improve the automated results (see also Section 3.2). Therefore on-the-fly generalised datasets are not considered to be realistic. Worth mentioning are the achievements of Denmark to automatically generalise 1:50k dataset from 1:10k dataset with only minimum human interaction. They can produce a complete new series of 1:50k map sheets in less than 18 months. Denmark is also preparing a new 1:100k dataset generalised from the 1:50k dataset.

If the specific dataset did not yet exist (1:50k dataset in Germany and Denmark; 1:25k database in Catalonia (Baella & Pla, 2005); 1:100k dataset in France) a first edition was generalised as automated as possible with manual improvements of the automated results. After the new dataset has been generated, generalisation focuses on the updates, with the exception of Denmark. Denmark still generalises the entire dataset 1:50k every time to update this dataset. The reason is that the base dataset is renewed and changed constantly, because of a major change in topographic data collection. Therefore Denmark produces a new complete, generalised dataset once a year.

Managing relationships between different scales

The last step for automated generalisation within NMAs is establishing links between objects at different scales. The AdV project in Germany (*Arbeitsgemeinschaft der Vermessungsverwaltungen*; AdV (2007)) builds and maintains references between different datasets. Catalonia has adjusted its data models at different scales in order to keep the semantic coherence between different scales. In France relationships are maintained between BDCarto (~ 1:50k) on the one side and the 1:100k and 1:120k dataset on the other side (Lecordix et al., 2007). The other NMAs maintain no or little information on links between the datasets at different scales.

3.2 Necessary Research to Improve Current Generalisation Practice

The second question of the workshop was: what research is needed to improve current generalisation practice? Before agreeing on topics for further research, the participants concluded that results of previous studies on automated generalisation have not always found their way to practice. The directions for future generalisation research as stated by Mueller et al. (1995) seem still to be valid: *“Research cooperation between NMAs and academic research should be intensified. NMAs should state their requirements with respect to generalisation functions more clearly and academic research should take up these issues. Likewise, the third player in R&D, software vendors, should be in close contact with developments taking place at NMAs and sponsor research at academic institutions.”*

The participants identified three reasons for the difficulty to implement research results into practice. Firstly, results have to be implemented in commercial software to become available for NMAs, but generalisation requirements are very diverse and NMA-specific, depending on data models, software, source and target scales etc. It is
hard for software vendors to provide a general solution while taking individual NMA demands into account. Generic requirements may be specifically suitable to be addressed by vendors. However customisable software is more appropriate to meet NMA specific requirements. This also implies that NMAs need to invest in building expertise and skills to customize generalisation software. The second reason for the difficulty of introducing research results into practice is that generalisation research is often limited to specific themes or selections from datasets. In practice, generalisation is applied to existing datasets that may contain errors or have limitations with respect to generalisation (e.g. lack of object orientation, missing semantic, geometric and topological relationships between objects etc.).

The last reason for the difficult introduction of research results into practice is the subjectivity of generalisation. When two cartographers are given the same generalisation rules for the same area they will come to different results (Rieger & Coulson, 1993). Exceptions are common in the generalisation process, and there may be more than one ideal generalisation solution. This is not easy to automate. Nonetheless the participants identified topics for further research. Firstly, formalising generalisation requirements is of uttermost importance to automate the process and to unambiguously understand the requirements of NMAs. This includes the possibility of automatically evaluating the requirements after or as part of the process. Secondly a system is required that understands the problem of generalisation laid down by the formal requirements. Such a system should implement generalisation functionality that takes the global context (e.g. mountains, rural, urban) and local context (e.g. neighbouring objects) into account. The system should support databases, which are enriched with semantics for generalisation. Examples of such additional information are object density and distribution, relative importance of objects, semantic and topological relationships between objects (Weibel & Dutton, 1999). A third need for NMAs is generic generalisation functionality that is adaptable to different data models. This requires compatible data models that support multi-scale databases. In addition support for multi-representation databases (i.e. maintenance of links between derived and original dataset, automated updating of derived datasets, relevance check during updates) is hardly available in mainstream DBMSs but important when maintaining multi-scale data. Finally some participants in the workshop would like to see major progress in automated generalisation of contour lines, place names, buildings in the urban context, and pruning of artificial networks.

4 Quantitative Analysis of Relevant Generalisation Operators for Map Production

One of the topics identified for further research in the previous section is generically applicable generalisation functionality. To get more insights into what kind of functionality is lacking at NMAs and how important this functionality is for NMAs, a survey was carried out. The aim of this survey was to extend the findings of the workshop and to provide a quantitative view of the NMAs on missing generalisation functionality. This analysis enables formulating more specific recommendations for NMAs, software suppliers and the research community for developing generalisation solutions.
The title of the survey was the current problems of automated generalisation of topographic data at National Mapping Agencies and was carried out end 2007. It was completed by eleven NMAs from eight countries and three German states. The structure of the survey was two-fold. The first part addressed the kind of implementation of the generalisation process to derive topographic products at the specific NMA (model versus cartographic generalisation) and their degree of automation. This part of the survey was used to update the workshop findings and to outline generalisation practice at the NMAs as background to the second part of the survey.

The second part aimed at analysing in more detail and in a quantifiable way the missing generalisation functionality within NMAs. For an indicator of the missing generalisation functionality we used the importance and problematic (i.e. lacking) characteristics of generalisation operators. The motivation for using operators as an indicator is that operators are one of the main building blocks for generalisation processes. In addition they are suitable to quantify problems of automated generalisation. In the survey the operators were analysed with respect to the importance of feature types to which they are applied and considered for each scale transition separately.

This section presents a quantitative analysis of the second part of the survey (on generalisation operators) and introduces a ‘relevance’ factor for the operators which integrates the importance and problematic characteristics of operators. The analysis shows how generalisation operators are used in practice. It also shows the obstacles and requirements of operators for generalisation processes within NMAs. This analysis thereby goes beyond the preliminary results as presented in Foerster & Stoter (2008).

The major observations of Foerster & Stoter (2008) were that the model generalisation process at NMAs is far more automated and advanced than the cartographic generalisation process. In addition lots of different operators are required for a successful generalisation process as identified by the importance of operators. Finally, the most problematic operators during the generalisation process are Displacement and Typification.

Section 4.1 explains the method that quantifies the current problems of automated generalisation at NMAs through generalisation operators. It also explains the ‘relevance’ measure used in our method and describes the three steps of the method. The results of these three steps are presented in Section 4.2 to Section 4.4.

4.1 Method to Quantify Problems of automated generalisation of NMAs

Model and cartographic generalisation operators

To learn more about the specific problems of operators it is useful to distinguish between operators for model generalisation and operators for cartographic generalisation. Since no consensus exists on a distinction between model and cartographic generalisation, as mentioned in Section 3.2, the survey followed the approach of Foerster, Stoter & Kobben (2007), shown in Table 2. Their classification
is based on models of ISO and OGC. It has also been formalised using the Object Constraint Language (OCL) as described in Foerster et al. (2008).

Table 2: Classification of generalisation operators applied in the survey based on Foerster et al. (2007).

<table>
<thead>
<tr>
<th>Generalisation Type</th>
<th>Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model generalisation</td>
<td>Class Selection, Reclassification, Collapse, Combine, Simplification, Amalgamation</td>
</tr>
<tr>
<td>Cartographic Generalisation</td>
<td>Enhancement, Displacement, Elimination, Typification, Enlargement, Amalgamation</td>
</tr>
</tbody>
</table>

Topographic feature types
Generalisation operators are always applied to a specific feature type (or group of feature types). To include the aspect of feature types in our analysis, the survey studied the operators regarding the topographic feature types they are applied to. The set of topographic feature types that was used is adopted from the EuroRegional map project (Delattre, 2004) and is depicted in Table 3.

Table 3: Classification of topographic feature types applied in the survey.

<table>
<thead>
<tr>
<th>Feature Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Buildings</td>
</tr>
<tr>
<td>Railways</td>
</tr>
<tr>
<td>Roads</td>
</tr>
<tr>
<td>Relief</td>
</tr>
<tr>
<td>Lake</td>
</tr>
<tr>
<td>River</td>
</tr>
<tr>
<td>Coastal feature</td>
</tr>
<tr>
<td>Landcover</td>
</tr>
</tbody>
</table>

It is important to note, that the generalisation operators are rated regarding the specific feature type they are applied to. However they may take other features or feature types into account. Thus generalisation operators are considered to be contextual, if appropriate.

Analysis steps
The analysis steps of the method to measure the relevance of operators are depicted in Figure 2 and can be summarised as follows.
Step 1. Rescaling important and problematic operators
The survey separated between ‘important’ and ‘problematic’ operators. Important means that an operator is often applied and plays a dominant role in the specific generalisation process (applied on a specific scale transition and on a specific feature type). Whereas problematic means that a specific operator is lacking and it therefore exposes problems to the generalisation process. Both measures address an important and specific aspect. The results of these two separate measures have been reported in Foerster & Stoter (2008).

In this paper we combine the two measures in an aggregated value. Therefore the values (C) for the important and problematic generalisation operators are rescaled to their local minimum and maximum using Equation 1. Originally the participants were asked to rate the different variables using a value range from 0 (low) to 5 (high). After rescaling, all values are between 0 and 1 which allows us to compare and combine results of the different measures.

\[
\forall c \in C, c = \frac{c - \min(C)}{\max(C) - \min(C)} \quad \text{(Equation 1)}
\]

The resulting values are standardised on the local maximum (\(\max(C)\)) and the local minimum (\(\min(C)\)) of C. The rescaled values for the important and problematic operators are presented in Section 4.2.

Step 2. Calculating the relevance of operators
To get a complete picture of the operators, this paper introduces an integrated measure, termed as the relevance of a specific generalisation operator. The relevance measure combines the (rescaled) important and problematic values of operators using Equation 2.

\[
\forall g \in G, \exists f \in F, c = 0.5 \cdot g + 0.5 \cdot f \quad \text{(Equation 2)}
\]

Equation 2 weights the values of a set (g of G) by a corresponding measure (f) of another set (F). Equation 2 applies a linear factor of 0.5, which weights both aspects equally.
The results of this analysis separated for model and cartographic generalisation operators are presented in Section 4.3. The relevance measure is further compiled to global indicators by descriptive statistics which are visualised using Box-Plot diagrams in Section 4.3. The global indicators represent first quartile, third quartile, arithmetic mean and median for each of the scale transitions. The global indicators give additional information about the outcomes of the relevance measures for model and cartographic generalisation operators at specific scales. Any variance indicator would also have been an interesting global indicator. However they have not been calculated as the number of collected survey answers per scale was too small.

Step 3. Weighting the relevance of the operators by the importance of feature types
In a next step the relevance of the operators are weighted by the rescaled importance values of the feature type. The results are presented in Section 4.4. The relevance of operators already implicitly incorporates a certain degree of importance of the specific feature types. However, combining relevance with importance of feature types will both filter and exaggerate the relevant operators with respect to the most important feature types in the current products of NMAs. This new indicator better exposes the requirements for map production, since it provides not only insight into missing functionality, but also into which operators might be relevant in the future, i.e. how bad it is that they are missing?

The relevance of operators and the importance of feature type are weighted 0.5 and 0.5. Consequently, the importance and problematic characteristics of operators only influence this second measure by 0.25 each whereas the importance of the feature type is 0.5 of the complete measure. It may have been possible to weight the values by 1/3 each. However, in order to stress the role of the feature type within the generalisation process and its importance regarding the operator, we equally weighted the relevance values of operators and the importance value of feature types.

Scale transitions considered in the analysis
Apart from specific feature types at which operators are applied, scale transitions at which the operators are applied are important to identify missing generalisation functionality. Therefore the survey distinguished between scale transitions as they are carried out at the NMAs. To conduct representative results, the analysis focused only on scale transitions that are applied by more than three participants (i.e. 1:10k-1:50k; 1:50k-1:100k; 1:50-1:250k), see Figure 3. All results in the remainder of this section are analysed for these three scale transitions separately.
4.2 Important and Problematic Operators for Model and Cartographic Generalisation

This section introduces the rescaled values for important and problematic generalisation operators. The original values were collected from 0 to 5 and can be found in Foerster & Stoter (2008).

Important generalisation operators

The rescaled values representing the importance of operators in relation to the different feature types are presented in Table 4 for model generalisation operators and in Table 5 for cartographic generalisation operators. The importance values of these two types of operators differ when considering the specific scale transition. The importance of model generalisation is significantly higher at scale transition at smaller scales (1:50k – 1:250k). Whereas the importance of cartographic generalisation operators is higher at larger scales (1:10k – 1:50k). NMAs consider Simplification, Amalgamation (model generalisation) and Displacement (cartographic generalisation) as most important operators.
Table 4: Importance of model generalisation operators versus feature types related to scale.

Table 5: Importance of cartographic generalisation operators versus feature types related to scale.

Problematic generalisation operators
The lack of specific generalisation operators in relation to a specific feature type and scale are depicted in Table 6 (model generalisation) and Table 7 (cartographic generalisation). Table 6 shows that model generalisation operators are not considered as problematic. Contrary, the cartographic generalisation operators (Table 7) are more problematic for current production lines. The most problematic operators are Displacement and Typification.
4.3 Relevant Operators for Model and Cartographic Generalisation

The results of the relevance measure, combining the importance and lacking characteristics of operators, are presented in Table 8 (model generalisation) and Table 9 (cartographic generalisation). All values are calculated based on the rescaled measures presented in Section 4.2.
We can draw the following conclusions from these tables. Simplification, Collapse and Amalgamation are the most relevant model generalisation operators. Collapse is relevant at lower scale transitions (1:10k-1:50k), especially for roads, buildings and railways but not at the higher scale transition (1:50k-1:100k). This can be explained because already collapsed roads are reused at higher scales.

1 The survey did not result in sufficient information regarding model generalisation operators at the highest scale transition (1:50k-1:250k). Thus values for this scale transition have been excluded.
Table 9 shows that the most relevant generalisation operators for cartographic generalisation are Displacement and Typification. Additionally, any operator applied to feature type buildings is highly relevant.

To compare the overall relevance of operators at certain scale transitions and between model generalisation and cartographic generalisation, Figure 4 and Figure 5 presents the results of the global indicators (Box-Plot diagram). The rescaled values are the basis for those diagrams. Thus the value range is always between 0 and 1.

Several conclusions can be drawn from these global indicators. Firstly, the relevance of model generalisation operators increases with decreasing scales (from 1:10k-1:50k to 1:50k-1:100k), whereas the relevance of cartographic operators decreases with decreasing scale. A second conclusion is that cartographic generalisation operators are overall more relevant than model generalisation operators. This is in line with the workshop conclusions that especially contextual operators (mostly cartographic generalisation operators) are considered as problematic. In addition, the numbers support the initial findings of the survey reported in Foerster & Stoter (2008). Another observation from Figure 4 and Figure 5 is that the distribution of the values is different, as the median is above the average mean for model generalisation operators. This can be explained by low relevance values for model generalisation operators as shown in Table 8. In the case of cartographic generalisation it is slightly different. Some operators seem to be more relevant, as the mean is higher than the median, which is an indicator for statistical outliers.

Figure 4: Box-Plot diagram of the model generalisation operator measures (min=0, max=1) as presented in Table 8.
4.4 Relevance of operators weighted by importance value of Feature Types

Table 10 shows the rescaled importance values of the different feature types regarding the specific scale transitions, which were originally collected from 0 (low) to 5 (high). The table shows that rivers and roads are the most dominant feature types for all scale transitions. Whereas, the building feature type becomes less important over decreasing scale. In addition, networks become more important at smaller scales.

In a second step the relevance of generalisation operators (Section 4.3) are weighted by the rescaled importance values of the feature types. This indicator combines the importance values of the feature type (Table 10) according to Equation 2 with the relevance values of the model generalisation and cartographic generalisation operators (Table 8 and Table 9). The results are depicted in Table 11 and Table 12 for respectively model generalisation operators and cartographic generalisation operators.
The following observations can be made from these tables. The generalisation of buildings and roads appear to be the most relevant for model generalisation (Table 11). Especially Amalgamation of buildings seems to be highly relevant for map production at 1:10k-1:50k. In line with Table 8, Table 11 shows that Amalgamation is of major concern at the investigated scales. In contrast to some of the extremes that disappeared compared to Table 8. For example Simplification turns out to be not that relevant overall for model generalisation.

Also for cartographic generalisation (Table 12), weighting the relevance measures by importance values of feature types causes some extreme values to disappear. For instance Displacement got a lower relevance, due to the lower importance values of the combined feature types. However, as rivers are highly relevant in map production,
all the related operators (i.e. Enhancement and Elimination of rivers) become more relevant. The same conclusion applies to roads (i.e. Enlargement and Elimination) and also to railways (i.e. Elimination and Enhancement).

5 Conclusion
The aim of the research presented in this paper was to analyse the challenges of automated generalisation as experienced by NMAs as well as to elaborate on the consequences for research, NMAs and software vendors. First a qualitative analysis was carried out about the trends and policies on automated generalisation within NMAs (Section 3). The analysis is based on a workshop held in 2005 and attended by twelve NMAs. Recently, findings have been updated by the participants. From this analysis it can be concluded that full automation is not implemented at any NMA, although some NMAs have made large investments and achieved major steps, a representative example being Denmark. Another important conclusion from the workshop is that there is no single approach for the adoption of automated generalisation within NMAs. It heavily depends on NMA-specific factors such as the level of detail of initial datasets, supported scales, applied scale transitions, specific configuration of the landscape, variance in information at the largest scale according to type of area, specific data content per scale, geometry types of features, distinction between model and cartographic generalisation and organisational aspects such as the availability of special resources for strategic research, type of customers to serve, business model etc.

Ready to use software for automated generalisation is therefore not considered as appropriate for automated generalisation. Instead, it will require implementation as well as remodelling efforts of NMAs to introduce automated generalisation into own production lines. To support these NMA specific processes, NMAs need adjustable systems as well as generic applicable generalisation functionality. Providing a common view on such functionality, reflecting NMA requirements, may support researchers and software vendors to develop automated generalisation solutions for NMAs.

This motivates the quantitative analysis on missing generalisation functionality as described in Section 4. This analysis provides detailed insights into currently applied strategies towards generalisation operators and current problems of generalisation operators at NMAs.

The analysis demonstrates the relevance of specific generalisation operators by combining the importance and problematic (i.e. lacking) aspects of operators. This shows that the relevance of model generalisation operators increases with decreasing scales, but never reaches the relevance level of cartographic generalisation operators. Weighting the relevance measures by importance values of feature types results in another valuable conclusion. Especially network-based feature types such as rivers, railways and roads are relevant for NMAs in combination with the operators Enhancement, Typification and Elimination. Overall, contextual operators and operators that create generalised features that inherit a network-based structure are the main challenges for cartographic generalisation. This underlines the workshop findings.

The presented results of both the (updated findings of the) workshop as well as the survey describe the long term challenges for NMAs. They may therefore serve as a
guideline for NMAs, researchers and software suppliers to better align their activities. The presented work also extends the findings of the OEEPE project (Ruas, 2001) and the EuroSDR project as it studies generalisation operators not limited to specific generalisation solutions or test cases but as applied and required in NMA production lines.

Mackaness et al. (2007) state that research on automated generalisation should “connect” to practice in order to better meet their requirements and to streamline research activities. This study is an example of obtaining better understanding of NMA requirements for automated generalisation and of identifying topics for further research starting from a requirement analysis at NMAs. In addition exchanging knowledge about generalisation operators, the main building blocks of automated generalisation processes, sharpens the terminology within NMAs and research groups and thereby improves the interoperability of concepts. This will enable more flexible and effective solutions both in databases as well as on the web. In the future the presented criteria could be reassessed to identify the success and remaining problems of NMAs of automated generalisation. The resulting index could then be used to assess the undertaken effort of the generalisation community.

Acknowledgements

We highly appreciate the individual contributions of members of (* = participating in the survey; + = participating in the workshop): LGN Lower Saxony *+ (German state), LVG Bavaria *+ (German state), LVA Baden-Wuerttemberg *+ (German state), LVA North Rhine-Westphalia + (German state), BKG * (Germany), NLS * (Finland), IGN *+ (Belgium), IGN *+ (France), OS *+ (Ireland), OS + (Great Britain), KMS *+ (Denmark), Swiss Topo *+ (Switzerland), TDK *+ (the Netherlands), ICC + (Spain, Catalonia) and Lantmäteriet + (Sweden). We also kindly appreciate the feedback of Nicolas Regnauld (Ordnance Survey, GB) and Harry Uitermark (Dutch Kadaster) who helped us improving the survey.

References

